

Axial Shaft Seals

Less space required, less friction, easy to install

Carl Hirschmann GmbH

Precision as passion

Highest precision is the distinctive trademark of our axial shaft seals. With great passion and deep special know how we develop and manufacture trend-setting products for your ambitious requirements – since decades and with increasing enthusiasm.

Carl Hirschmann – the precision benchmark

For more than 60 years Carl Hirschmann GmbH develops and manufactures trendsetting products amongst others for vehicle construction, motor sport, aerospace, railed vehicles, mechanical and medical engineering, naval architecture and wind power plants. Core competences lie in the three product lines Rod Ends and Spherical Bearings, Rotary Indexing Tables and Clamping Systems and Axial Shaft Seals. In these sectors Carl Hirschmann has extensive expert knowledge as well as experience for decades and can offer customer-specific solutions in addition to a wide range of standard products. The medium-sized enterprise located in Baden-Württemberg with sales companies in US and China currently employs about 200 people.

Contents

General information	3
Introduction, characteristics	4
Application examples	5
Technical notes, diagrams	6-7
Table of resistances	8
Installations guide	9
Axial Shaft Seals Type VI	10-11
Axial Shaft Seals Type VA	12-13
Axial Shaft Seals Type VI (special sizes)	14
Axial Shaft Seals Type VA (special sizes)	15
Axial Shaft Seals Type DI	16

General Information

This catalogue is based on the latest in development and production. Diverging information in older documents no longer applies. We reserve the right to make modifications in the interests of continuous development of our products. Reprints and extracts shall only be permitted with our approval.

Standard Designs

The axial shaft seals shown and described in this catalogue are made of Perbunan®. Viton® fluoroelastomers seals are made to oder so that short delays might occur before delivery.

Special Designs

In addition to standard design we produce- regardless of the quantity- special sizes of up to 460 mm diameter as well as tailor- made ones.

Warranty

All the information contained in this catalogue is the result of years of experience in the manufacture and use of axial shaft seals. Nevertheless, unknown parameters and practical conditions of use can considerably reduce the validity of these general statements, so that the user must conduct practical tests. The multitude of applications for axial shaft seals means that we cannot accept any liability for the correctness of our recommendations in individual instances.

Quality according to ISO 9001 and EN 9100

All Carl Hirschmann axial shaft seals are produced using the latest and most reliable production methods, and are subject to quality assurance measures as per ISO 9001 and EN 9100 (air and space industry standard) both during production and in the product stage.

Service and sales

Our staff and the sales engineers at our agencies and dealers in Germany and abroad, would be pleased to assist you at any time.

Axial Shaft Seals

Introduction

Carl Hirschmann Axial Shaft Seals do not seal radially on the shaft, but are installed on the shaft or in a

bearing seat and provide their sealing effect on any hardened and ground, axial mating surface. For this reason, there is no shaft wear.

Hardened and ground shaft collars or ends, as well as counter-rotating washers or the unstamped faces of antifriction bearings, are especially well suited as the mating surface.

The sealing lip is of tapered design in order to keep heatup, wear and friction to a minimum. Its sturdy configuration ensures proper contact.

The packing ring and the radial spring acting against the rear of the sealing lip ensure uniform,

vibration-free pressure.

Characteristics

- Minimum friction and heat-up
- Less space required
- Easy installation
- High heat and chemical resistance
- High rubbing speed
- Long life

Registrated Trademarks: Viton® is a registered trademark of DuPont Dow Elastomers. Perbunan® is a registered trademark of Bayer AG Leverkusen

Type VI..

Axial shaft seal with internal sealing lip, mainly for use with liquids. The seal usually employed in a stationery manner, i.e. with a rotating shaft. Care should be taken to ensure that the sealing lip does not run dry. Should this be unavoidable, please contact us.

By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

Type VA..

Axial shaft seal with external sealing lip, for use with grease. At low peripheral speeds and very good – if possible, lapped – mating surfaces, it can also be used with liquids. For use with liquids, the maximum

permissible speed must be reduced to 1/3 of the figure indicated in the table. By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this

pressure by up to 50%, nowever this can result in greater friction and heatup, and consequently in faster wear.

Type DI..

Axial shaft seal with internal sealing lip, for use with liquids under high pressure. This seal operates in accordance with the "knuckle action" principle, i.e. the pressure build-up on the medium side is partly reversed by the appropriately designed packing ring, thereby pressing the sealing lip against the mating surface.

P = Pressure

- Fa = Contact pressure force of sealing lip
- n = Speed

Application examples

Applications:

- Motor and gear manufacturing
- Agricultural machinery
- Machine tools
- Track construction machines
- Construction machines
- Medical technology

Track construction machine

Turbine

Encoder

Installation examples

Fertilizer spreader

Fitting polishing machine

Clarification plants

Worm drive

Push-fit shafts

Vertikal cutter

Axial Shaft Seals

Technical notes

Material

Materials are selected on the basis of their chemical and thermal stability relative to the medium to the sealed. The table of resistance on page 5 schedules the elastomers customarily employed by us. In most applications, Perbunan® seals are employed. Care should also be taken to determine whether the anti-corrosive properties of the metallic components are sufficient.

Protection against corrosion

In the standard models, the reinforcing ring is of phosphorated deep-drawn sheet and the radial spring from size 111 or 211 upward of bright-drawn spring strip steel. Seal sizes 100 to 110 and 200 to 210 are equipped with radial springs of stainless spring strip steel as standard. From size 111 or 211 upward, the seals can also be equipped with stainless radial springs upon request. Radial springs of spring-hard brass sheet are frequently

employed for special sizes and designs..

Dependability of seal

In order to ensure a dependable sealing effect, the pressure exerted by the medium to the sealed may not lift these a ling lip up off the mating surface. The maximum permissible pressure per seal size can be seen in the tables on the type pages. It is only permissible to increase the sealing lip prestress by increasing the spring force if a dependable seal cannot be ensured in any other manner. Otherwise, an increase in the sealing lip prestress would result in unnecessary friction and heat-up, leading to unnecessary wear.

Peripheral and rotational speed

In order to avoid unnecessary heat-up and wear of the sealing lip, it is necessary to limit the peripheral speed at the sealing lip in accordance with the selected seal material. The permissible rotational speeds for Perbunan® and Viton®, by seal size, can be seen from the tables in the seal sizes. The diagram on page 7 provides a rapid overview for Perbunan®.

Friction and dissipated output

In order to determine the required drive output, information is necessary regarding the coefficient of friction at start-up and the dissipated output under normal operating conditions. During start-up, static friction is initially encountered, followed by dynamic friction. The coefficient for static friction is assumed to be $\mu_o = 0.48$, the coefficient for dynamic friction a maximum of p = 0.24 (0.12–0.24). These figures apply for lubricated steel/ PERBUNAN and steel/VITON sealing surfaces.

Friction

$$M_{\rm RO} = 5 \cdot 10^{-4} \cdot F_{\rm a} \cdot d_{\rm m} \cdot \mu_{\rm o}$$

Dissipated output $P_R = 52,5 \cdot 10^{-6} F_a \cdot d_m \cdot n \cdot \mu$ [W] $F_a = \text{contact pressure force of the sealing lip}$ [N] $d_m^a = \text{mean diameter of sealing lip}$ [mm] n = speed [min⁻¹] $\mu_a = \text{coefficient of friction, static}$

 μ° = coefficient of friction, dynamic

Permissible peripheral speed

The peripheral speed at the sealing lip may not exceed the following values:

Type VI:	Perbunan Viton	20 m/s 30 m/s
Type VA:	Perbunan Viton	10 m/s 15 m/s
Type DI:	Perbunan Viton	9 m/s 13 m/s

These values assume sufficient lubrication and heat dissipation at the sealing surface. Should these conditions not be provided, the limits shown at the left must be appropriately reduced, in accordance with the specific application.

Designations employed, with the corresponding SI units

Peripheral speed:	V	m/s
Speed:	n	min⁻¹
Axial force:	Fa	Ν
Pressure:	р	Pa
Moment of friction:	M _{RO}	J
Dissipated output:	P	W
Width/lenght, diameter:	b, Ì, d	mm
Coefficient of friction, static:	μ	_
Coefficient of friction, dynamic:	μ	_

Conversion of units:

1 N = 0,102 kp 1 Pa = 0,102 mmWS = 10⁻⁵ PSI 1 J = 0,102 kpm = 1 Nm 1 W = 1,36 · 10⁻³ PSI

Diagrams

Permissible speed for Perbunan

Mean diameter of sealing lip $\boldsymbol{Ø} d_m$ [mm]

Coefficient of friction dissipated output

Axial shaft Seals Table of resistances

Material	Perbunan	Viton B
Composition	NBR Acrylonitrilebutadiene rubber	FKM Fluorelastomer rubber
Colour	VI black/VA anthracite	anthracite
Distinguishing mark	no	yellow dot
Temperature range in °C (at the sealing lip)	-30° to +120° C	–25° to +250° C
Shore hardness °Sh	75 ±5 Shore A	75 ±5 Shore A
Abrasion resistance to DIN 53516	very good	good
Flame resistant	no	yes
Gas permeability	unsuitable	good
Weather (light, ozone)	limited	very good
Water below 100° C	good	very good
Lubrication oils	very good	very good
Hydraulic oils	limited to very good	very good
Fuel oils	average	very good
Silicon oils and greases	average	very good
Animal and vegetable fats	very good	very good
Brake fluids	unsuitable	limited
High-octane petrol	average	very good
Kerosene	good	very good
Alcohols x to	limited to very good	limited to very good
Aromatic hydrocarbons	limited	very good
Aliphatic hydrocarbons	good	very good
Chlorinated hydrocarbons	limited	very good
Acids (organic)	unsuitable	unsuitable
Acids (inorganic)	unsuitable to good	unsuitable to good
Alkalis	limited to average	limited to average

Registrated Trademarks:

Viton® is a registered trademark of DuPont Dow Elastomers. Perbunan® is a registered trademark of Bayer AG Leverkusen

Installations guide

Sealing surface - mating surface

The unstamped, hardened and factory-ground faces of antifriction bearings or appropriately machined shaft collars and ends as well as support washers, thrust needle bearing washers or washers stamped from spring sheet or other economical solutions are suitable as the sealing surface. Steel, brass, bronze, aluminium alloys and ceramic can be employed as the materials.

Properties of the sealing surface

The sealing surface must be perfectly smooth and hard and may not contain any spiral grooves or scratches. Surface hardness for steel, greater than HRC = 40, or less for other materials.

Maximum surface roughness for use with oil Rt = 4 μm , or Rt = 10 μm for use with grease.

The radial out-of-true of the sealing surface has no effect on the sealing properties, the permissible axial out-oftrue can – referred to the permissible speed – be up to 0.05 mm for use with grease or up to 0.03 mm for use with oil.

Installation tolerances

The reception holes of Types VI and DI should be fabricated in accordance with ISO H9 and the shaft diameter for Type VA in accordance with ISO h9.

The reception hole and the shaft must be chamfered approx. 15° for at least 1 mm.

The tolerances for the functional dimensions of the seals are shown in the tables.

Installation/ assembly

In most cases "blind installation" is unavoidable, i.e. uniform seating of the sealing lip on the mating surface cannot be checked visually. Proper installation and assembly can be ensured if the axial shaft seal is inserted flat with the aid of an assembly sleeve or washer, so as to insure that the sealing lip cannot be damaged or distorted. Prior to inserting the seal, clean and lightly lubricate the sealing surface in order to keep wear to a minimum during running-in-phase.

The best seal is obtained when the pre-stressed sealing lip is located on the same plane as the end fase of the seal, or does not protrude more than 0.1 mm.

When using a mating washer, insure that the medium to be sealed cannot egress between washer and shaft.

Seals should not be reused after having been removed, as removal usually deforms the seal or damages vital areas of it.

Seal storage

Until being installed, the axial shaft seal should be stored in a dry area, in the original packaging if possible. Under no circumstances may they be lined up on wire ring or stored in a similar manner, as this could damage or deform the sensitive sealing lips. When staking axial shaft seals, care should be taken to ensure that they are stacked sealing lip to sealing lip or packing ring back to back.

Improper handling of the axial shaft seal prior to installation can result in premature failure.

Axial shaft seals

Type VI.. (Standard sizes)

Internal seal for liquids, predominantly oil and grease

Type VI..

Axial shaft seal with internal sealing lip, mainly for use with liquids.

The seal usually employed in a stationery manner, i.e. with a rotating shaft. Care should be taken to ensure that the sealing lip does not run dry. Should this be unavoidable, please contact us. By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

	A=contact pressure													
	Choft					Perm.	speed		Perm.	Match	up to an	tifrictio	n bearing	g series
Туре	Ø	di	da	d3	b	Perbu- nan	Viton	А	pres- sure	6000 6200	6300	6400	4200	4300
	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]					
VI 100	10	11,0 ±0,6	24 +0,15/+0,30	12,5 ±1,0	4,0 +0,25/ -0,20	25400	38000	3,0	9000	6000	6300			
VI 101	12	13,0 ±0,6	26 +0,15/+0,30	14,7 ±1,0	4,0 +0,25/ -0,20	23800	35700	3,5	9400	6001			4200A	
VI 102	15	16,0 ±0,6	30 +0,15/+0,30	17,5 ±1,0	4,5 +0,25/ -0,20	19200	28800	4,0	9500	6002				4301A
VI 103	17	18,0 ±0,6	33 +0,15/+0,30	19,5 ±1,0	4,5 +0,25/ -0,20	17500	26200	2,5	8800	6003	6302			
VI 104	20	22,0 ±1,0	39 +0,15/+0,30	24,0 ±1,0	4,5 +0,25/ -0,20	14700	22000	4,5	6900	6004	6304	6403		
VI 105	25	27,0 ±1,0	44 +0,15/+0,30	28,0 ±1,0	4,5 +0,25/ -0,20	13000	19500	7,5	6150	6005		6404		
VI 106	30	32,0 ±1,0	50 +0,15/+0,30	33,9 ±1,0	5,0 +0,25/ -0,20	10600	15900	11,0	5800	6006		6405		
VI 107	35	37,0 ±1,0	56 +0,20/+0,35	39,0 ±1,0	5,0 +0,25/ -0,20	9300	13900	7,0	6100	6007	6306	6406	4206A	
VI 108	40	42,0 ±1,0	62 +0,20/+0,35	44,8 ±1,0	5,5 +0,25/ -0,20	8100	12000	7,0	6550	6008	6307	6407	4207A	
VI 109	45	47,0 ±1,0	70 +0,20/+0,35	48,5 ±1,0	5,5 +0,25/ -0,20	7200	10800	15,5	5200	6009	6308	6408	4208A	
VI 110	50	52,0 ±1,0	75 +0,20/+0,35	55,0 ±1,0	6,0 +0,25/ -0,20	6600	9900	7,0	4750	6010	6309	6409	4209A	
VI 111	55	58,0 ±1,0	83 +0,20/+0,35	61,4 ±1,0	6,0 +0,25/ -0,20	6000	9000	10,5	4450	6011	6310		4210A	
VI 112	60	61,5 ±1,0	89 +0,20/+0,35	65,0 ±1,0	6,5 +0,25/ -0,20	5500	8200	18,0	3800	6012	6311	6410	4211A	
VI 113	65	67,0 ±1,0	94 +0,20/+0,35	71,4 ±2,0	7,0 +0,25/ -0,20	5200	7800	13,0	4600	6013	6312	6411	4212A	
VI 114	70	73,0 ±1,5	104 +0,20/+0,35	76,3 ±2,0	7,5 +0,25/ -0,20	4800	7200	17,5	3800	6014	6313	6412	4213	
VI 115	75	78,0 ±1,5	109 +0,20/+0,35	81,0 ±2,0	7,5 +0,25/ -0,20	4500	6700	16,0	4350	6015	6314	6413	4214	
VI 116	80	83,0 ±2,0	119 +0,20/+0,35	85,3 ±2,0	8,0 +0,25/ -0,20	4300	6400	17,5	2900	6016	6315	6414	4215	
VI 118	90	93,0 ±2,0	132 +0,25/+0,45	95,8 ±2,0	8,5 +0,25/ -0,20	3800	5700	33,0	3050	6018	6317	6415/ 6416	4217	
VI 119	95	98,0 ±2,0	137 +0,25/+0,45	101,5 ±2,0	8,5 +0,25/ -0,20	3600	5400	19,0	3250	6019	6318	6415/ 6416		
VI 120	100	101,0 ±2,0	142 +0,25/+0,45	105,4 ±2,0	8,5 +0,25/ -0,20	3400	5100	26,0	3400	6020	6319	6416	4218	

Type VI.. (Standard sizes)

Internal seal for liquids, predominantly oil and grease \mathbf{b}

Type VI..

Axial shaft seal with internal sealing lip, mainly for use with liquids.

The seal usually employed in a stationery manner, i.e. with a rotating shaft. Care should be taken to ensure that the sealing lip does not run dry. Should this be unavoidable, please contact us. By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

	Shaft					Perm.	speed		Perm.	Match	-up anti	friction	bearing	gseries
Туре	Ø	di	da	d3	b	Perbu- nan	Viton	A	pres- sure	6000 6200	6300	6400	4200	4300
	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]					
VI 200	10	11,5 ±1,0	26 +0,15/+0,30	13,5 ±1,0	4,5 +0,25/ -0,20	24600	36900	2,0	9700	6200				
VI 201	12	13,3 ±1,0	28 +0,15/+0,30	15,6 ±1,0	4,5 +0,25/ -0,20	22200	33300	4,0	10700	6201	6300/ 6301		4201	
VI 202	15	16,3 ±1,0	31 +0,15/+0,30	18,6 ±1,0	4,5 +0,25/ -0,20	18200	27300	4,0	12800	6202	6302		4202	
VI 203	17	18,3 ±1,0	36 +0,15/+0,30	21,0 ±1,0	5,0 +0,25/ -0,20	16600	24900	5,5	8100	6203	6303		4203	4302
VI 204	20	21,3 ±1,0	41 +0,15/+0,30	23,8 ±1,0	5,5 +0,25/ -0,20	14700	22000	4,0	7400	6204	6304	6403	4204	4303
VI 205	25	26,3 ±1,0	46 +0,15/+0,30	28,3 ±1,0	5,5 +0,25/ -0,20	12700	19000	9,0	6400	6205		6403		4304
VI 206	30	32,0 ±1,0	56 +0,2/+0,35	34,7 ±1,0	6,0 +0,25/ -0,20	10300	15400	8,0	4900	6206		6405		4305
VI 207	35	37,0 ±1,0	65 +0,20/+0,35	41,0 ±1,0	6,5 +0,25/ -0,20	8900	13300	6,0	3300	6207	6306/ 6307	6405/ 6406		4306
VI 208	40	41,5 ±1,0	73 +0,20/+0,35	46,3 ±1,0	6,5 +0,25/ -0,20	7600	11400	12,0	3200	6208	6308	6407		4307
VI 209	45	47,0 ±1,0	78 +0,20/+0,35	52,0 ±1,0	6,5 +0,25/ -0,20	7000	10500	12,0	3000	6209	6308/ 6309	6407/ 6408		4308
VI 210	50	53,0 ±1,0	83 +0,20/+0,35	57,0 ±2,0	6,5 +0,25/ -0,20	6400	9600	9,0	3000	6210	6309	6408/ 6409		4309
VI 211	55	58,0 ±1,0	9 0 +0,20/+0,35	63,0 ±2,0	7,0 +0,25/ -0,20	5900	8800	10,0	2750	6211	6310	6409/ 6410		4310
VI 212	60	63,0 ±1,0	100 +0,20/+0,35	66,0 ±2,0	8,0 +0,25/ -0,20	5500	8200	9,5	2100	6212	6311	6410		4311
VI 213	65	68,0 ±1,0	110 +0,20/+0,35	72,0 ±2,0	8,5 +0,25/ -0,20	5000	7500	11,0	2000	6213	6312	6411/ 6412		
VI 214	70	72,0 ±2,0	115 +0,20/+0,35	75,6 ±2,0	8,5 +0,25/ -0,20	4800	7200	9,0	2000	6214	6313	6411/ 6412		4312
VI 215	75	78,0 ±2,0	120 +0,20/+0,35	83,2 ±2,0	8,5 +0,25/ -0,20	4400	6600	15,5	2100	6215	6313/ 6314	6413/ 6414		4313
VI 216	80	84,0 ±2,0	128 +0,20/+0,35	89,5 ±2,0	9,5 +0,25/ -0,20	4100	6100	14,5	2400	6216	6314/ 6315	6414		4314
VI 217	85	87,0 ±2,0	138 +0,25/+0,45	93,0 ±2,0	9 ,5 +0,25/ -0,20	3900	5800	14,5	2100	6217	6315/ 6316	6414/ 6415		4315
VI 218	90	94,0 ±2,0	148 +0,25/+0,45	98,0 ±2,0	10,0 +0,25/ -0,20	3700	5500	16,5	2000	6218	6316	6415/ 6416		
VI 219	95	98,0 ±2,0	158 +0,25/+0,45	103,5 ±2,0	10,0 +0,25/ -0,20	3500	5200	18,5	2000	6219	6317/ 6318	6415/ 6416		6416/ 6417
VI 220	100	104,0 ±2,0	168 +0,25/+0,45	110,0 ±2,0	10,5 +0,25/ -0,20	3300	4900	21,0	2100	6220	6318/ 6319	6416		

the **precision** benchmark

Axial shaft seals

Type VA.. (Standard sizes)

A=contcat pressure

Type VA..

Axial shaft seal with external sealing lip, for use with grease. At low peripheral speeds and very good – if possible, lapped – mating surfaces, it can also be used with liquids.

This seal can be employed in either a stationery or rotating manner. For use with liquids, the maximum permissible speed must be reduced to 1/3 of the figure indicated in the table. By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

						Perm.	speed		Perm.	Match-up to antifriction bearing					
Туре	Housing Ø	di	da	d3	b	Perbu-	Viton	А	pres-	6000	6300	series 6400	4200	4300	
						nan			sure	6200					
	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]						
VA 100	26,5	12,0 -0,15/-0,30	25,5 -0,5	24,2 ±0,5	3,5 +0,25/ -0,20	7900	11800	4,0	10000	6000					
VA 101	29,0	14,0 -0,15/-0,30	27,8 -0,5	26,3 ±0,5	3,5 +0,25/ -0,20	7300	11000	5,0	7500	6001					
VA 102	32,5	17,0 -0,15/-0,30	31,4 -0,5	29,8 ±0,7	4,0 +0,25/ -0,20	6300	9400	6,0	10000	6002					
VA 103	35,5	19,0 -0,15/-0,30	34,5 -0,7	32,5 ±0,7	4,0 +0,25/ -0,20	5900	8800	6,0	10000	6003	6300				
VA 104	42,0	23,0 -0,15/-0,30	41,0 -0,7	38,6 ±0,7	4,5 +0,25/ -0,20	4900	7300	10,0	6600	6004	6302				
VA 105	47,5	28,0 -0,15/-0,30	46,5 -1,0	44,0 ±0,7	4,5 +0,25/ -0,20	4300	6400	11,0	5750	6005					
VA 106	54,5	35,0 -0,15/-0,30	53,4 -1,0	51,0 ±0,7	4,5 +0,25/ -0,20	3800	5700	5,0	5400	6006					
VA 107	62,0	40,0 -0,15/-0,30	60,9 -1,0	57,8 ±0,7	4,5 +0,25/ -0,20	3300	4900	10,0	4400	6007	6305				
VA 108	67,0	45,0 -0,15/-0,30	66,4 -2,0	63,5 ±1,0	5,0 +0,25/ -0,20	3000	4500	12,0	4000	6008		6404			
VA 109	76,5	50,0 -0,15/-0,30	75,5 -2,0	71,5 ±1,0	5,0 +0,25/ -0,20	2700	4000	12,0	3400	6009	6307	6405			
VA 110	78,5	55,0 -0,20/-0,35	77,5 -2,0	75,0 ±1,0	5,5 +0,25/ -0,20	2500	3700	9,5	3650	6010					
VA 111	88,0	61,0 -0,20/-0,35	87,0 -2,0	84,0 ±1,0	6,0 +0,25/ -0,20	2250	3400	11,5	3100	6011		6407			
VA 112	94,0	66,0 -0,20/-0,35	93,0 -2,0	88,5 ±1,0	6,0 +0,25/ -0,20	2150	3200	11,5	3300	6012	6309				
VA 113	98,5	71,0 -0,20/-0,35	97,5 -2,0	93,2 ±1,0	6,0 +0,25/ -0,20	2000	3000	15,0	3200	6013		6408			
VA 114	107,0	76,0 -0,20/-0,35	106,0 -2,0	103,0 ±2,0	6,5 +0,25/ -0,20	1800	2700	14,5	3000	6014	6310				
VA 115	113,0	81,0 -0,20/-0,35	112,0 -2,0	108,5 ±2,0	7,0 +0,25/ -0,20	1700	2550	14,5	3700	6015	6311	6409			
VA 116	123,0	86,0 -0,20/-0,35	122,0 -2,0	118,9 ±2,0	7,5 +0,25/ -0,20	1600	2400	15,0	2950	6016	6312	6410			
VA 118	137,5	98,0 -0,20/-0,35	136,5 -2,5	131,9 ±2,0	8,0 +0,25/ -0,20	1450	2150	33,0	2750	6018	6314	6412			
VA 119	142,5	103,0 -0,20/-0,35	141,5 -2,5	137,0 ±2,0	7,5 +0,25/ -0,20	1400	2100	24,5	2850	6019	6314	6412			
VA 120	148,0	108,0 -0,20/-0,35	147,0 -2,5	141,5 ±2,0	8,5 +0,25/ -0,20	1350	2000	27,5	2900	6020	6315	6413			

Type VA.. (Standard sizes)

Type VA..

Axial shaft seal with external sealing lip, for use with grease. At low peripheral speeds and very good – if possible, lapped – mating surfaces, it can also be used with liquids.

This seal can be employed in either a stationery or rotating manner. For use with liquids, the maximum permissible speed must be reduced to 1/3 of the figure indicated in the table. By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

Housing	Housing			d3		Perm.	speed		Perm.	Match-up to antifriction bearing series					
Туре	Ø	di	da	d3	b	Perbu- nan	Viton	А	pres- sure	6000 6200	6300	6400	4200	4300	
	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]						
VA 200	31,0	14,0 -0,15/-0,30	29,9 -0,5	28,1 ±0,5	4,0 +0,25/ -0,20	7000	10500	4,0	6000	6200			4200A		
VA 201	32,5	16,0 -0,15/-0,30	31,5 -0,5	29,1 ±0,5	4,0 +0,25/ -0,20	6500	9700	3,0	4700	6201			4201A		
VA 202	34,5	19,0 -0,15/-0,30	33,4 -0,7	32,0 ±0,7	4,0 +0,25/ -0,20	6400	9600	5,5	8150	6202	6300		4202A	4301A	
VA 203	40,0	21,0 -0,15/-0,30	38,7 -0,7	36,9 ±0,7	4,0 +0,25/ -0,20	4900	7300	5,0	5950	6203			4203A	4302A	
VA 204	47,0	25,0 -0,15/-0,30	46,0 -1,0	42,8 ±0,7	4,5 +0,25/ -0,20	4400	6600	5,0	4450	6204	6303		4204A	4303A	
VA 205	52,5	31,0 -0,15/-0,30	51,1 -1,5	48,2 ±1,0	5,0 +0,25/ -0,20	3900	5800	9,0	4500	6205	6304		4205A		
VA 206	62,0	36,0 -0,15/-0,30	61,0 -2,0	58,0 ±1,0	5,5 +0,25/ -0,20	3300	4900	7,0	3400	6206	6305	6404	4206A	4305A	
VA 207	70,0	42,0 -0,15/-0,30	68,7 -2,0	65,0 ±1,0	6,0 +0,25/ -0,20	2900	4300	8,0	2700	6207	6306		4207A	4306A	
VA 208	79,0	47,0 -0,15/-0,30	78,0 -2,0	73,0 ±1,0	6,0 +0,25/ -0,20	2600	3900	8,0	2200	6208	6307	6405	4208A	4307A	
VA 209	84.5	52,0 -0,20/-0,35	83,2 -2,0	78,9 ±1,0	6,5 +0,25/ -0,20	2400	3600	9,0	2450	6209	6308	6406	4209A	4308A	
VA 210	87,5	57,0 -0,20/-0,35	86,2 -2,0	83,6 ±1,0	7,0 +0,25/ -0,20	2300	3400	9,5	2450	6210		6407	4210A		
VA 211	97,5	64,0 -0,20/-0,35	96,4 -2,0	92,2 ±1,0	7,5 +0,25/ -0,20	2100	3100	11,0	2300	6211	6309	6408	4211A	4309A	
VA 212	108,0	69,0 -0,20/-0,35	107,0 -2,0	101,5 ±2,0	8,0 +0,25/ -0,20	1800	2700	9,0	1900	6212	6310	6409	4212A	4310A	
VA 213	118,0	74,0 -0,20/-0,35	117,0 -2,5	110,0 ±2,0	8,5 +0,25/ -0,20	1700	2500	12,0	1700	6213	6311	6410	4213A	4311A	
VA 214	122,5	80,0 -0,20/-0,35	121,3 -2,5	117,5 ±2,0	8,5 +0,25/ -0,20	1650	2450	17,0	2000	6214	6312		4214A	4312A	
VA 215	127,5	85,0 -0,20/-0,35	126,3 -2,0	120,0 ±2,0	9,0 +0,25/ -0,20	1600	2400	17,0	2100	6215	6312		4215A	4313A	
VA 216	137,0	92,0 -0,20/-0,35	136,0 -2,0	129,8 ±2,0	9,0 +0,25/ -0,20	1450	2150	12,0	2050	6216	6313	6411	4216A	4314A	
VA 217	147,0	97,0 -0,20/-0,35	145,8 -2,0	138,5 ±2,0	9,0 +0,25/ -0,20	1350	2000	25,0	2100	6217	6314	6412	4217A	4315A	
VA 218	157,5	102,0 -0,20/-0,35	156,5 -2,5	149,0 ±2,0	9 ,5 +0,25/ -0,20	1250	1850	17,0	1600	6218	6315	6413	4218A		
VA 219	167,0	108,0 -0,20/-0,35	165,9 -2,5	162,4 ±2,0	9 ,5 +0,25/ -0,20	1200	1800	21,0	1600	6219	6316	6415			
VA 220	176,5	114,0 -0,20/-0,35	175,5 -2,5	168,8 ±2,0	10,0 +0,25/ -0,20	1100	1650	30,0	1500	6220	6317	6416	4220A		

the **precision** benchmark

Axial shaft seals Type VI.. (Special sizes)

Internal seal for liquids, predominantly oil and grease

A=contact pressure

Special sizes Type VI..

Axial shaft seal with internal sealing lip, mainly for use with liquids.

The seal usually employed in a stationery manner, i.e. with a rotating shaft. Care should be taken to ensure that the sealing lip does not run dry. Should this be unavoidable, please contact us.

By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

Times	Shaft	ال	ala	40	l-	Perm.	speed	^	Perm.
туре	Ø	ai	da	a3	D	Perbunan	Viton	A	pressure
	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]
VI 6	6	6,9 -0,2	17,0 +0,15/ +0,30	7,9 -0,3	3,5 +0,25/ -0,20	45000	67000	2,0	43500
VI 8	8	8,7 -0,3	20,0 +0,15/ +0,30	9,4 -0,3	4,0 +0,25/ -0,20	35000	52000	2,5	35600
VI 122S	110	115,5 -2,0	160,4 +0,25/ +0,45	119,0 ±1,5	9,2 +0,25/ -0,20	3100	4600	25,0	2000
VI 1245	120	127,5 -2,5	170,2 +0,25/ +0,45	130,0 ±1,5	9,0 +0,25/ -0,20	2900	4300	42,0	3050
VI 126S	130	136,5 -2,5	190,0 +0,25/ +0,45	138,0 ±1,5	9 ,5 +0,25/ -0,20	2600	3900	31,0	1750
VI 1285	140	144,5 -2,5	200,4 +0,25/ +0,45	147,5 ±1,5	9,5 +0,25/ -0,20	2500	3700	50,0	2850
VI 1305	150	155,3 -2,5	214,6 +0,25/ +0,45	159,5 ±1,5	10,0 +0,25/ -0,20	2300	3400	31,5	2000
VI 1325	160	164,5 -3,0	229,9 +0,25/ +0,45	169,3 ±1,5	10,0 +0,25/ -0,20	2100	3100	40,0	2700
VI 134S	170	178,5 -3,0	250,6 +0,25/ +0,45	178,0 ±1,5	10,8 +0,25/ -0,20	2050	3000	32,0	1900
VI 144S	200	229,5 -3,5	327,9 +0,30/ +0,55	230 ±2,0	13,2 +0,25/ -0,20	1550	2300	36,0	2200
VI 1485	240	247,0 -1,3	348,0 +0,30/ +0,55	249,0 ±1,3	13,0 +0,25/ -0,20	1500	2250	38,0	1000
VI 156S	270	280,2 -4,5	360,1 +0,30/ +0,55	291,0 ±2,5	13,0 +0,25/ -0,20	1300	1950	41,0	1350
VI 216S	80	81,9 -1,5	129,9 +0,25/ +0,45	81,0 ±1,0	9,0 +0,25/ -0,20	4200	6300	18,0	2900
VI 2215	110	115,9 -2,0	190,4 +0,25/ +0,45	122,0 ±1,0	9,3 +0,25/ -0,20	2900	4300	20,0	1300
VI 3205	110	112,3 -2,0	190,1 +0,25/ +0,45	113,5 ±1,0	9 ,5 +0,25/ -0,20	3000	4500	68,0	5600
VI 324S	130	136,5 -2,5	200,0 +0,25/ +0,45	138,0 ±1,5	9 ,5 +0,25/ -0,20	2600	3900	43,0	4800

Type VA (Special sizes)

External seal for grease only

Special sizes Type VA..

Axial shaft seal with external sealing lip, for use with grease. At low peripheral speeds and very good – if possible, lapped – mating surfaces, it can also be used with liquids. This seal can be employed in either a stationery or rotating

manner. For use with liquids, the maximum permissible speed must be reduced to 1/3 of the figure indicated in the table.

By increasing the spring force, it is possible to raise the medium pressure by up to 50%, however this can result in greater friction and heat-up, and consequently in faster wear.

Turne.	Housing	d:	da	40	h	Perm.	speed	_	perm.
туре	Ø	ai	ua	us	D	Perbunan	Viton	A	pressure
	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]
VA 1125	94,0	66,0 -0,20/-0,35	92,7 -2,0	88,0 ±1,0	6,0 +0,25/ -0,20	2000	3000	28,0	7000
VA 1225	168,0	120,0 -0,25/-0,45	167,0 -3,0	157,8 ±1,5	9,2 +0,25/ -0,20	1200	1800	21,0	2000
VA 1245	162,0	129,8 -0,25/-0,45	161,0 -3,0	156,0 ±1,5	7,2 +0,25/ -0,20	1200	1800	32,0	3100
VA 12451	177,5	129,8 -0,25/-0,45	176,5 -3,0	169,5 ±1,5	9,2 +0,25/ -0,20	1100	1650	38,0	2000
VA 12452	172,0	130,2 -0,25/-0,45	171,0 -3,0	164,5 ±1,5	9,0 +0,25/ -0,20	1100	1650	56,0	5300
VA 1285	207,5	150,3 -0,25/-0,45	206,3 -3,5	198,5 ±2,0	9,9 +0,25/ -0,20	950	1400	60,0	4400
VA 1305	251,0	159,9 -0,25/-0,45	250,0 -4,5	240,3 ±2,0	10,0 +0,25/ -0,20	750	1100	52,0	1000
VA 13052	252,0	160,0 -0,25/-0,45	251,0 -4,5	243,4 ±2,0	8,1 +0,25/ -0,20	750	1100	33,0	1500
VA 1345	214,0	180,4 -0,25/-0,45	213,0 -4,0	207,5 ±2,0	6,0 +0,25/ -0,20	900	1350	76,0	4000
VA 1485	348,5	252,4 -0,25/-0,45	347,5 -5,5	336,5 ±2,5	13,0 +0,25/ -0,20	550	800	74,0	1000
VA 1625	184,0	162,0 -0,25/-0,45	182,7 -3,0	178,7 ±1,5	6,0 +0,25/ -0,20	1000	1500	49,0	6500
VA 2095	92,0	48,6 -0,15/-0,30	90,7 -2,0	86,5 ±1,0	6,5 +0,25/ -0,20	2200	3300	6,0	1500

Axial shaft seals Type DI..

Internal seal for oil and grease under high pressure

Type DI..

Axial shaft seal with internal sealing lip, for use with liquids under high pressure. This seal operates in accordance with the "knuckle action" principle, i.e. the pressure build-up on the medium side is partly reversed by the appropriately designed packing ring, thereby pressing the sealing lip against the mating surface.

Tura	Shaft	ai	da	40	40	h	Perm.	speed	^	Perm.
туре	Ø	ai	ua	۵Z	us	a	Perbunan	Viton	A	pressure
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[min ⁻¹]	[min ⁻¹]	[N]	[Pa]
DI 204	20	21,0 ±0,5	41,0 +0,15/+0,30	27,5 ±0,5	24,5 ±0,5	7,5 +0,25/ -0,20	6000	9000	4,5	500000
DI 205	25	26,0 ±0,5	46,0 +0,15/+0,30	33,0 ±0,7	29,0 ±0,7	8,0 +0,25/ -0,20	5000	7500	14,0	500000
DI 206	30	31,0 ±0,5	56,0 +0,20/+0,35	40,0 ±0,7	33,0 ±0,7	9,0 +0,25/ -0,20	4000	6000	7,0	400000
DI 208	40	41,5 ±0,5	73,0 +0,20/+0,35	51,0 ±0,7	46,0 ±0,7	10,0 +0,25/ -0,20	3000	4500	15,0	300 000
DI 210	50	51,5 ±1,0	83,0 +0,20/+0,35	62,0 ±0,7	56,5 ±0,7	10,0 +0,25/ -0,20	2000	3900	17,0	260000
DI 211	55	56,5 ±1,0	90,0 +0,20/+0,35	66,0 ±1.0	60,5 ±1,0	11,0 +0,25/ -0,20	2500	3700	15,0	250000
DI 214	70	72,0 ±1,0	115,0 +0,20/+0,35	84,0 ±1.0	78,0 ±1.0	13,0 +0,25/ -0,20	2000	3000	14,5	200000
DI 220	100	102,0 ±1,0	168,0 +0,25/+0,45	119,5 ±2,0	111,0 ±2,0	15,5 +0,25/ -0,20	1400	2100	80,0	140000
DI 228	140	143,0 ±1,0	221,0 +0,25/+0,45	165,0 ±2,0	158,0 ±2,0	20,5 +0,25/ -0,20	1000	1500	56,0	100000
DI 236	180	184,0 ±1,3	286,0 +0,25/+0,45	208,0 ±2.0	200,0 ±2.0	20,5 +0,25/ -0,20	800	1200	28,0	80000

HEADQUARTER

Carl Hirschmann GmbH Kirchentannenstraße 9 78737 Fluorn-Winzeln Germany

T +49 7402 183-0

F +49 7402 183-10

E info@carlhirschmann.de

USA

Carl Hirschmann, Inc. 165 East Commerce Drive Ste 104 Schaumburg, IL 60173 USA_____

T +1 847 468 9700 F +1 847 468 9701 E info@carlhirschmann.us

CHINA

Carl Hirschmann Room C528, Block 180, South Chang Jiang Road Bao Shan District, Shanghai P.R.CHINA 200433

T +86 139 16 13 58 45 E info@carlhirschmann.com.cn

carlhirschmann.de